Continuous

Uniform([lower, upper, transform]) Continuous uniform log-likelihood.
Flat(*args, **kwargs) Uninformative log-likelihood that returns 0 regardless of the passed value.
HalfFlat(*args, **kwargs) Improper flat prior over the positive reals.
Normal([mu, sd, tau]) Univariate normal log-likelihood.
HalfNormal([sd, tau]) Half-normal log-likelihood.
SkewNormal([mu, sd, tau, alpha]) Univariate skew-normal log-likelihood.
Beta([alpha, beta, mu, sd]) Beta log-likelihood.
Exponential(lam, *args, **kwargs) Exponential log-likelihood.
Laplace(mu, b, *args, **kwargs) Laplace log-likelihood.
StudentT(nu[, mu, lam, sd]) Student’s T log-likelihood.
HalfStudentT([nu, sd, lam]) Half Student’s T log-likelihood
Cauchy(alpha, beta, *args, **kwargs) Cauchy log-likelihood.
HalfCauchy(beta, *args, **kwargs) Half-Cauchy log-likelihood.
Gamma([alpha, beta, mu, sd]) Gamma log-likelihood.
Weibull(alpha, beta, *args, **kwargs) Weibull log-likelihood.
Lognormal([mu, sd, tau]) Log-normal log-likelihood.
ChiSquared(nu, *args, **kwargs) \(\chi^2\) log-likelihood.
Wald([mu, lam, phi, alpha]) Wald log-likelihood.
Pareto(alpha, m, *args, **kwargs) Pareto log-likelihood.
InverseGamma(alpha[, beta]) Inverse gamma log-likelihood, the reciprocal of the gamma distribution.
ExGaussian(mu, sigma, nu, *args, **kwargs) Exponentially modified Gaussian log-likelihood.
VonMises([mu, kappa, transform]) Univariate VonMises log-likelihood.
Triangular([lower, upper, c]) Continuous Triangular log-likelihood
Gumbel([mu, beta]) Univariate Gumbel log-likelihood
Logistic([mu, s]) Logistic log-likelihood.
LogitNormal([mu, sd, tau]) Logit-Normal log-likelihood.
Interpolated(x_points, pdf_points[, transform]) Univariate probability distribution defined as a linear interpolation of probability density function evaluated on some lattice of points.

pymc3.distributions

A collection of common probability distributions for stochastic nodes in PyMC.

class pymc3.distributions.continuous.Uniform(lower=0, upper=1, transform='interval', *args, **kwargs)

Continuous uniform log-likelihood.

The pdf of this distribution is

\[f(x \mid lower, upper) = \frac{1}{upper-lower}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-1.png
Support \(x \in [lower, upper]\)
Mean \(\dfrac{lower + upper}{2}\)
Variance \(\dfrac{(upper - lower)^2}{12}\)
Parameters:
  • lower (float) – Lower limit.
  • upper (float) – Upper limit.
class pymc3.distributions.continuous.Flat(*args, **kwargs)

Uninformative log-likelihood that returns 0 regardless of the passed value.

class pymc3.distributions.continuous.HalfFlat(*args, **kwargs)

Improper flat prior over the positive reals.

class pymc3.distributions.continuous.Normal(mu=0, sd=None, tau=None, **kwargs)

Univariate normal log-likelihood.

The pdf of this distribution is

\[f(x \mid \mu, \tau) = \sqrt{\frac{\tau}{2\pi}} \exp\left\{ -\frac{\tau}{2} (x-\mu)^2 \right\}\]

Normal distribution can be parameterized either in terms of precision or standard deviation. The link between the two parametrizations is given by

\[\tau = \dfrac{1}{\sigma^2}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-2.png
Support \(x \in \mathbb{R}\)
Mean \(\mu\)
Variance \(\dfrac{1}{\tau}\) or \(\sigma^2\)
Parameters:
  • mu (float) – Mean.
  • sd (float) – Standard deviation (sd > 0) (only required if tau is not specified).
  • tau (float) – Precision (tau > 0) (only required if sd is not specified).

Examples

with pm.Model():
    x = pm.Normal('x', mu=0, sd=10)

with pm.Model():
    x = pm.Normal('x', mu=0, tau=1/23)
class pymc3.distributions.continuous.Beta(alpha=None, beta=None, mu=None, sd=None, *args, **kwargs)

Beta log-likelihood.

The pdf of this distribution is

\[f(x \mid \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-3.png
Support \(x \in (0, 1)\)
Mean \(\dfrac{\alpha}{\alpha + \beta}\)
Variance \(\dfrac{\alpha \beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\)

Beta distribution can be parameterized either in terms of alpha and beta or mean and standard deviation. The link between the two parametrizations is given by

\[ \begin{align}\begin{aligned}\begin{split}\alpha &= \mu \kappa \\ \beta &= (1 - \mu) \kappa\end{split}\\\text{where } \kappa = \frac{\mu(1-\mu)}{\sigma^2} - 1\end{aligned}\end{align} \]
Parameters:
  • alpha (float) – alpha > 0.
  • beta (float) – beta > 0.
  • mu (float) – Alternative mean (0 < mu < 1).
  • sd (float) – Alternative standard deviation (0 < sd < sqrt(mu * (1 - mu))).

Notes

Beta distribution is a conjugate prior for the parameter \(p\) of the binomial distribution.

class pymc3.distributions.continuous.Exponential(lam, *args, **kwargs)

Exponential log-likelihood.

The pdf of this distribution is

\[f(x \mid \lambda) = \lambda \exp\left\{ -\lambda x \right\}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-4.png
Support \(x \in [0, \infty)\)
Mean \(\dfrac{1}{\lambda}\)
Variance \(\dfrac{1}{\lambda^2}\)
Parameters:lam (float) – Rate or inverse scale (lam > 0)
class pymc3.distributions.continuous.Laplace(mu, b, *args, **kwargs)

Laplace log-likelihood.

The pdf of this distribution is

\[f(x \mid \mu, b) = \frac{1}{2b} \exp \left\{ - \frac{|x - \mu|}{b} \right\}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-5.png
Support \(x \in \mathbb{R}\)
Mean \(\mu\)
Variance \(2 b^2\)
Parameters:
  • mu (float) – Location parameter.
  • b (float) – Scale parameter (b > 0).
class pymc3.distributions.continuous.StudentT(nu, mu=0, lam=None, sd=None, *args, **kwargs)

Student’s T log-likelihood.

Describes a normal variable whose precision is gamma distributed. If only nu parameter is passed, this specifies a standard (central) Student’s T.

The pdf of this distribution is

\[f(x|\mu,\lambda,\nu) = \frac{\Gamma(\frac{\nu + 1}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{\lambda}{\pi\nu}\right)^{\frac{1}{2}} \left[1+\frac{\lambda(x-\mu)^2}{\nu}\right]^{-\frac{\nu+1}{2}}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-6.png
Support \(x \in \mathbb{R}\)
Parameters:
  • nu (float) – Degrees of freedom, also known as normality parameter (nu > 0).
  • mu (float) – Location parameter.
  • sd (float) – Standard deviation (sd > 0) (only required if lam is not specified)
  • lam (float) – Precision (lam > 0) (only required if sd is not specified)

Examples

with pm.Model():
    x = pm.StudentT('x', nu=15, mu=0, sd=10)

with pm.Model():
    x = pm.StudentT('x', nu=15, mu=0, lam=1/23)
class pymc3.distributions.continuous.Cauchy(alpha, beta, *args, **kwargs)

Cauchy log-likelihood.

Also known as the Lorentz or the Breit-Wigner distribution.

The pdf of this distribution is

\[f(x \mid \alpha, \beta) = \frac{1}{\pi \beta [1 + (\frac{x-\alpha}{\beta})^2]}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-7.png
Support \(x \in \mathbb{R}\)
Mode \(\alpha\)
Mean undefined
Variance undefined
Parameters:
  • alpha (float) – Location parameter
  • beta (float) – Scale parameter > 0
class pymc3.distributions.continuous.HalfCauchy(beta, *args, **kwargs)

Half-Cauchy log-likelihood.

The pdf of this distribution is

\[f(x \mid \beta) = \frac{2}{\pi \beta [1 + (\frac{x}{\beta})^2]}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-8.png
Support \(x \in \mathbb{R}\)
Mode 0
Mean undefined
Variance undefined
Parameters:beta (float) – Scale parameter (beta > 0).
class pymc3.distributions.continuous.Gamma(alpha=None, beta=None, mu=None, sd=None, *args, **kwargs)

Gamma log-likelihood.

Represents the sum of alpha exponentially distributed random variables, each of which has mean beta.

The pdf of this distribution is

\[f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}x^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-9.png
Support \(x \in (0, \infty)\)
Mean \(\dfrac{\alpha}{\beta}\)
Variance \(\dfrac{\alpha}{\beta^2}\)

Gamma distribution can be parameterized either in terms of alpha and beta or mean and standard deviation. The link between the two parametrizations is given by

\[\begin{split}\alpha &= \frac{\mu^2}{\sigma^2} \\ \beta &= \frac{\mu}{\sigma^2}\end{split}\]
Parameters:
  • alpha (float) – Shape parameter (alpha > 0).
  • beta (float) – Rate parameter (beta > 0).
  • mu (float) – Alternative shape parameter (mu > 0).
  • sd (float) – Alternative scale parameter (sd > 0).
class pymc3.distributions.continuous.Weibull(alpha, beta, *args, **kwargs)

Weibull log-likelihood.

The pdf of this distribution is

\[f(x \mid \alpha, \beta) = \frac{\alpha x^{\alpha - 1} \exp(-(\frac{x}{\beta})^{\alpha})}{\beta^\alpha}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-10.png
Support \(x \in [0, \infty)\)
Mean \(\beta \Gamma(1 + \frac{1}{\alpha})\)
Variance \(\beta^2 \Gamma(1 + \frac{2}{\alpha} - \mu^2)\)
Parameters:
  • alpha (float) – Shape parameter (alpha > 0).
  • beta (float) – Scale parameter (beta > 0).
class pymc3.distributions.continuous.HalfStudentT(nu=1, sd=None, lam=None, *args, **kwargs)

Half Student’s T log-likelihood

The pdf of this distribution is

\[f(x \mid \sigma,\nu) = \frac{2\;\Gamma\left(\frac{\nu+1}{2}\right)} {\Gamma\left(\frac{\nu}{2}\right)\sqrt{\nu\pi\sigma^2}} \left(1+\frac{1}{\nu}\frac{x^2}{\sigma^2}\right)^{-\frac{\nu+1}{2}}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-11.png
Support \(x \in [0, \infty)\)
Parameters:
  • nu (float) – Degrees of freedom, also known as normality parameter (nu > 0).
  • sd (float) – Scale parameter (sd > 0). Converges to the standard deviation as nu increases. (only required if lam is not specified)
  • lam (float) – Scale parameter (lam > 0). Converges to the precision as nu increases. (only required if sd is not specified)

Examples

# Only pass in one of lam or sd, but not both.
with pm.Model():
    x = pm.HalfStudentT('x', sd=10, nu=10)

with pm.Model():
    x = pm.HalfStudentT('x', lam=4, nu=10)
class pymc3.distributions.continuous.Lognormal(mu=0, sd=None, tau=None, *args, **kwargs)

Log-normal log-likelihood.

Distribution of any random variable whose logarithm is normally distributed. A variable might be modeled as log-normal if it can be thought of as the multiplicative product of many small independent factors.

The pdf of this distribution is

\[f(x \mid \mu, \tau) = \frac{1}{x} \sqrt{\frac{\tau}{2\pi}} \exp\left\{ -\frac{\tau}{2} (\ln(x)-\mu)^2 \right\}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-12.png
Support \(x \in [0, \infty)\)
Mean \(\exp\{\mu + \frac{1}{2\tau}\}\)
Variance \((\exp\{\frac{1}{\tau}\} - 1) \times \exp\{2\mu + \frac{1}{\tau}\}\)
Parameters:
  • mu (float) – Location parameter.
  • sd (float) – Standard deviation. (sd > 0). (only required if tau is not specified).
  • tau (float) – Scale parameter (tau > 0). (only required if sd is not specified).

Example

# Example to show that we pass in only `sd` or `tau` but not both.
with pm.Model():
    x = pm.Lognormal('x', mu=2, sd=30)

with pm.Model():
    x = pm.Lognormal('x', mu=2, tau=1/100)
class pymc3.distributions.continuous.ChiSquared(nu, *args, **kwargs)

\(\chi^2\) log-likelihood.

The pdf of this distribution is

\[f(x \mid \nu) = \frac{x^{(\nu-2)/2}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-13.png
Support \(x \in [0, \infty)\)
Mean \(\nu\)
Variance \(2 \nu\)
Parameters:nu (int) – Degrees of freedom (nu > 0).
class pymc3.distributions.continuous.HalfNormal(sd=None, tau=None, *args, **kwargs)

Half-normal log-likelihood.

The pdf of this distribution is

\[ \begin{align}\begin{aligned}f(x \mid \tau) = \sqrt{\frac{2\tau}{\pi}} \exp\left(\frac{-x^2 \tau}{2}\right)\\f(x \mid \sigma) =\sigma \sqrt{\frac{2}{\pi}} \exp\left(\frac{-x^2}{2\sigma^2}\right)\end{aligned}\end{align} \]

Note

The parameters sigma/tau (\(\sigma\)/\(\tau\)) refer to the standard deviation/precision of the unfolded normal distribution, for the standard deviation of the half-normal distribution, see below. For the half-normal, they are just two parameterisation \(\sigma^2 \equiv \frac{1}{\tau}\) of a scale parameter

(Source code, png, hires.png, pdf)

../../_images/continuous-14.png
Support \(x \in [0, \infty)\)
Mean \(\sqrt{\dfrac{2}{\tau \pi}}\) or \(\dfrac{\sigma \sqrt{2}}{\sqrt{\pi}}\)
Variance \(\dfrac{1}{\tau}\left(1 - \dfrac{2}{\pi}\right)\) or \(\sigma^2\left(1 - \dfrac{2}{\pi}\right)\)
Parameters:
  • sd (float) – Scale parameter \(sigma\) (sd > 0) (only required if tau is not specified).
  • tau (float) – Precision \(tau\) (tau > 0) (only required if sd is not specified).

Examples

with pm.Model():
    x = pm.HalfNormal('x', sd=10)

with pm.Model():
    x = pm.HalfNormal('x', tau=1/15)
class pymc3.distributions.continuous.Wald(mu=None, lam=None, phi=None, alpha=0.0, *args, **kwargs)

Wald log-likelihood.

The pdf of this distribution is

\[f(x \mid \mu, \lambda) = \left(\frac{\lambda}{2\pi)}\right)^{1/2} x^{-3/2} \exp\left\{ -\frac{\lambda}{2x}\left(\frac{x-\mu}{\mu}\right)^2 \right\}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-15.png
Support \(x \in (0, \infty)\)
Mean \(\mu\)
Variance \(\dfrac{\mu^3}{\lambda}\)

Wald distribution can be parameterized either in terms of lam or phi. The link between the two parametrizations is given by

\[\phi = \dfrac{\lambda}{\mu}\]
Parameters:
  • mu (float, optional) – Mean of the distribution (mu > 0).
  • lam (float, optional) – Relative precision (lam > 0).
  • phi (float, optional) – Alternative shape parameter (phi > 0).
  • alpha (float, optional) – Shift/location parameter (alpha >= 0).

Notes

To instantiate the distribution specify any of the following

  • only mu (in this case lam will be 1)
  • mu and lam
  • mu and phi
  • lam and phi

References

[Tweedie1957812]Tweedie, M. C. K. (1957). Statistical Properties of Inverse Gaussian Distributions I. The Annals of Mathematical Statistics, Vol. 28, No. 2, pp. 362-377
[Michael1976812]Michael, J. R., Schucany, W. R. and Hass, R. W. (1976). Generating Random Variates Using Transformations with Multiple Roots. The American Statistician, Vol. 30, No. 2, pp. 88-90
class pymc3.distributions.continuous.Pareto(alpha, m, *args, **kwargs)

Pareto log-likelihood.

Often used to characterize wealth distribution, or other examples of the 80/20 rule.

The pdf of this distribution is

\[f(x \mid \alpha, m) = \frac{\alpha m^{\alpha}}{x^{\alpha+1}}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-16.png
Support \(x \in [m, \infty)\)
Mean \(\dfrac{\alpha m}{\alpha - 1}\) for \(\alpha \ge 1\)
Variance \(\dfrac{m \alpha}{(\alpha - 1)^2 (\alpha - 2)}\) for \(\alpha > 2\)
Parameters:
  • alpha (float) – Shape parameter (alpha > 0).
  • m (float) – Scale parameter (m > 0).
class pymc3.distributions.continuous.InverseGamma(alpha, beta=1, *args, **kwargs)

Inverse gamma log-likelihood, the reciprocal of the gamma distribution.

The pdf of this distribution is

\[f(x \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} \exp\left(\frac{-\beta}{x}\right)\]

(Source code, png, hires.png, pdf)

../../_images/continuous-17.png
Support \(x \in (0, \infty)\)
Mean \(\dfrac{\beta}{\alpha-1}\) for \(\alpha > 1\)
Variance \(\dfrac{\beta^2}{(\alpha-1)^2(\alpha)}\) for \(\alpha > 2\)
Parameters:
  • alpha (float) – Shape parameter (alpha > 0).
  • beta (float) – Scale parameter (beta > 0).
class pymc3.distributions.continuous.ExGaussian(mu, sigma, nu, *args, **kwargs)

Exponentially modified Gaussian log-likelihood.

Results from the convolution of a normal distribution with an exponential distribution.

The pdf of this distribution is

\[f(x \mid \mu, \sigma, \tau) = \frac{1}{\nu}\; \exp\left\{\frac{\mu-x}{\nu}+\frac{\sigma^2}{2\nu^2}\right\} \Phi\left(\frac{x-\mu}{\sigma}-\frac{\sigma}{\nu}\right)\]

where \(\Phi\) is the cumulative distribution function of the standard normal distribution.

(Source code, png, hires.png, pdf)

../../_images/continuous-18.png
Support \(x \in \mathbb{R}\)
Mean \(\mu + \nu\)
Variance \(\sigma^2 + \nu^2\)
Parameters:
  • mu (float) – Mean of the normal distribution.
  • sigma (float) – Standard deviation of the normal distribution (sigma > 0).
  • nu (float) – Mean of the exponential distribution (nu > 0).

References

[Rigby20051014]Rigby R.A. and Stasinopoulos D.M. (2005). “Generalized additive models for location, scale and shape” Applied Statististics., 54, part 3, pp 507-554.
[Lacouture20081014]Lacouture, Y. and Couseanou, D. (2008). “How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times”. Tutorials in Quantitative Methods for Psychology, Vol. 4, No. 1, pp 35-45.
class pymc3.distributions.continuous.VonMises(mu=0.0, kappa=None, transform='circular', *args, **kwargs)

Univariate VonMises log-likelihood.

The pdf of this distribution is

\[f(x \mid \mu, \kappa) = \frac{e^{\kappa\cos(x-\mu)}}{2\pi I_0(\kappa)}\]

where \(I_0\) is the modified Bessel function of order 0.

(Source code, png, hires.png, pdf)

../../_images/continuous-19.png
Support \(x \in [-\pi, \pi]\)
Mean \(\mu\)
Variance \(1-\frac{I_1(\kappa)}{I_0(\kappa)}\)
Parameters:
  • mu (float) – Mean.
  • kappa (float) – Concentration (frac{1}{kappa} is analogous to sigma^2).
class pymc3.distributions.continuous.SkewNormal(mu=0.0, sd=None, tau=None, alpha=1, *args, **kwargs)

Univariate skew-normal log-likelihood.

The pdf of this distribution is
\[f(x \mid \mu, \tau, \alpha) = 2 \Phi((x-\mu)\sqrt{\tau}\alpha) \phi(x,\mu,\tau)\]

(Source code, png, hires.png, pdf)

../../_images/continuous-20.png
Support \(x \in \mathbb{R}\)
Mean \(\mu + \sigma \sqrt{\frac{2}{\pi}} \frac {\alpha }{{\sqrt {1+\alpha ^{2}}}}\)
Variance \(\sigma^2 \left( 1-\frac{2\alpha^2}{(\alpha^2+1) \pi} \right)\)

Skew-normal distribution can be parameterized either in terms of precision or standard deviation. The link between the two parametrizations is given by

\[\tau = \dfrac{1}{\sigma^2}\]
Parameters:
  • mu (float) – Location parameter.
  • sd (float) – Scale parameter (sd > 0).
  • tau (float) – Alternative scale parameter (tau > 0).
  • alpha (float) – Skewness parameter.

Notes

When alpha=0 we recover the Normal distribution and mu becomes the mean, tau the precision and sd the standard deviation. In the limit of alpha approaching plus/minus infinite we get a half-normal distribution.

class pymc3.distributions.continuous.Triangular(lower=0, upper=1, c=0.5, *args, **kwargs)

Continuous Triangular log-likelihood

The pdf of this distribution is

\[\begin{split}\begin{cases} 0 & \text{for } x < a, \\ \frac{2(x-a)}{(b-a)(c-a)} & \text{for } a \le x < c, \\[4pt] \frac{2}{b-a} & \text{for } x = c, \\[4pt] \frac{2(b-x)}{(b-a)(b-c)} & \text{for } c < x \le b, \\[4pt] 0 & \text{for } b < x. \end{cases}\end{split}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-21.png
Support \(x \in [lower, upper]\)
Mean \(\dfrac{lower + upper + c}{3}\)
Variance \(\dfrac{upper^2 + lower^2 +c^2 - lower*upper - lower*c - upper*c}{18}\)
Parameters:
  • lower (float) – Lower limit.
  • c (float) – mode
  • upper (float) – Upper limit.
class pymc3.distributions.continuous.Gumbel(mu=0, beta=1.0, **kwargs)
Univariate Gumbel log-likelihood

The pdf of this distribution is

\[f(x \mid \mu, \beta) = -\frac{x - \mu}{\beta} - \exp \left(-\frac{x - \mu}{\beta} \right) - \log(\beta)\]

(Source code, png, hires.png, pdf)

../../_images/continuous-22.png
Support \(x \in \mathbb{R}\)
Mean \(\mu + \beta\gamma\), where gamma is the Euler-Mascheroni constant
Variance \(\frac{\pi^2}{6} \beta^2)\)
Parameters:
  • mu (float) – Location parameter.
  • beta (float) – Scale parameter (beta > 0).
class pymc3.distributions.continuous.Logistic(mu=0.0, s=1.0, *args, **kwargs)

Logistic log-likelihood.

The pdf of this distribution is

\[f(x \mid \mu, s) = \frac{\exp\left(-\frac{x - \mu}{s}\right)}{s \left(1 + \exp\left(-\frac{x - \mu}{s}\right)\right)^2}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-23.png
Support \(x \in \mathbb{R}\)
Mean \(\mu\)
Variance \(\frac{s^2 \pi^2}{3}\)
Parameters:
  • mu (float) – Mean.
  • s (float) – Scale (s > 0).
class pymc3.distributions.continuous.LogitNormal(mu=0, sd=None, tau=None, **kwargs)

Logit-Normal log-likelihood.

The pdf of this distribution is

\[f(x \mid \mu, \tau) = \frac{1}{x(1-x)} \sqrt{\frac{\tau}{2\pi}} \exp\left\{ -\frac{\tau}{2} (logit(x)-\mu)^2 \right\}\]

(Source code, png, hires.png, pdf)

../../_images/continuous-24.png
Support \(x \in (0, 1)\)
Mean no analytical solution
Variance no analytical solution
Parameters:
  • mu (float) – Location parameter.
  • sd (float) – Scale parameter (sd > 0).
  • tau (float) – Scale parameter (tau > 0).
class pymc3.distributions.continuous.Interpolated(x_points, pdf_points, transform='interval', *args, **kwargs)

Univariate probability distribution defined as a linear interpolation of probability density function evaluated on some lattice of points.

The lattice can be uneven, so the steps between different points can have different size and it is possible to vary the precision between regions of the support.

The probability density function values don not have to be normalized, as the interpolated density is any way normalized to make the total probability equal to $1$.

Both parameters x_points and values pdf_points are not variables, but plain array-like objects, so they are constant and cannot be sampled.

Support \(x \in [x\_points[0], x\_points[-1]]\)
Parameters:
  • x_points (array-like) – A monotonically growing list of values
  • pdf_points (array-like) – Probability density function evaluated on lattice x_points
class pymc3.distributions.continuous.Rice(nu=None, sd=None, *args, **kwargs)

Rice distribution.

\[f(x\mid \nu ,\sigma )= {\frac {x}{\sigma ^{2}}}\exp \left({\frac {-(x^{2}+\nu ^{2})}{2\sigma ^{2}}}\right)I_{0}\left({\frac {x\nu }{\sigma ^{2}}}\right),\]
Support \(x \in (0, +\infinity)\)
Mean \(\sigma {\sqrt {\pi /2}}\,\,L_{{1/2}}(-\nu ^{2}/2\sigma ^{2})\)
Variance
:math:`2sigma ^{2}+nu ^{2}-{frac {pi sigma ^{2}}{2}}L_{{1/2}}^{2}
left({frac {-nu ^{2}}{2sigma ^{2}}}right)`
Parameters:
  • nu (float) – shape parameter.
  • sd (float) – standard deviation.