Posts tagged hierarchical model
NBA Foul Analysis with Item Response Theory
- 17 April 2022
- Category: intermediate, tutorial
This tutorial shows an application of Bayesian Item Response Theory [Fox, 2010] to NBA basketball foul calls data using PyMC. Based on Austin Rochford’s blogpost NBA Foul Calls and Bayesian Item Response Theory.
A Primer on Bayesian Methods for Multilevel Modeling
- 27 February 2022
- Category: intermediate
Hierarchical or multilevel modeling is a generalization of regression modeling. Multilevel models are regression models in which the constituent model parameters are given probability models. This implies that model parameters are allowed to vary by group. Observational units are often naturally clustered. Clustering induces dependence between observations, despite random sampling of clusters and random sampling within clusters.
Hierarchical Binomial Model: Rat Tumor Example
- 11 November 2021
- Category: intermediate
This short tutorial demonstrates how to use PyMC3 to do inference for the rat tumour example found in chapter 5 of Bayesian Data Analysis 3rd Edition [Gelman et al., 2013]. Readers should already be familliar with the PyMC3 API.
Hierarchical Partial Pooling
- 07 October 2021
- Category: intermediate
Suppose you are tasked with estimating baseball batting skills for several players. One such performance metric is batting average. Since players play a different number of games and bat in different positions in the order, each player has a different number of at-bats. However, you want to estimate the skill of all players, including those with a relatively small number of batting opportunities.
GLM: Mini-batch ADVI on hierarchical regression model
- 23 September 2021
- Category: intermediate
Unlike Gaussian mixture models, (hierarchical) regression models have independent variables. These variables affect the likelihood function, but are not random variables. When using mini-batch, we should take care of that.