# Posts tagged pymc3.Deterministic

## Binomial regression

This notebook covers the logic behind Binomial regression, a specific instance of Generalized Linear Modelling. The example is kept very simple, with a single predictor variable.

## Using shared variables (Data container adaptation)

The pymc.Data container class wraps the theano shared variable class and lets the model be aware of its inputs and outputs. This allows one to change the value of an observed variable to predict or refit on new data. All variables of this class must be declared inside a model context and specify a name for them.

## GLM: Robust Regression using Custom Likelihood for Outlier Classification

Using PyMC3 for Robust Regression with Outlier Detection using the Hogg 2010 Signal vs Noise method.

## Hierarchical Binomial Model: Rat Tumor Example

This short tutorial demonstrates how to use PyMC3 to do inference for the rat tumour example found in chapter 5 of Bayesian Data Analysis 3rd Edition . Readers should already be familliar with the PyMC3 API.

## Estimating parameters of a distribution from awkwardly binned data

Let us say that we are interested in inferring the properties of a population. This could be anything from the distribution of age, or income, or body mass index, or a whole range of different possible measures. In completing this task, we might often come across the situation where we have multiple datasets, each of which can inform our beliefs about the overall population.

## Hierarchical Partial Pooling

Suppose you are tasked with estimating baseball batting skills for several players. One such performance metric is batting average. Since players play a different number of games and bat in different positions in the order, each player has a different number of at-bats. However, you want to estimate the skill of all players, including those with a relatively small number of batting opportunities.

The Dirichlet process is a flexible probability distribution over the space of distributions. Most generally, a probability distribution, $$P$$, on a set $$\Omega$$ is a [measure](https://en.wikipedia.org/wiki/Measure_(mathematics%29) that assigns measure one to the entire space ($$P(\Omega) = 1$$). A Dirichlet process $$P \sim \textrm{DP}(\alpha, P_0)$$ is a measure that has the property that, for every finite disjoint partition $$S_1, \ldots, S_n$$ of $$\Omega$$,