Posts tagged pymc3.Potential

Using a “black box” likelihood function (numpy)

This notebook in part of a set of two twin notebooks that perform the exact same task, this one uses numpy whereas this other one uses Cython

Read more ...


GLM: Robust Regression using Custom Likelihood for Outlier Classification

Using PyMC3 for Robust Regression with Outlier Detection using the Hogg 2010 Signal vs Noise method.

Read more ...


Hierarchical Binomial Model: Rat Tumor Example

This short tutorial demonstrates how to use PyMC3 to do inference for the rat tumour example found in chapter 5 of Bayesian Data Analysis 3rd Edition [Gelman et al., 2013]. Readers should already be familliar with the PyMC3 API.

Read more ...


Sequential Monte Carlo

Sampling from distributions with multiple peaks with standard MCMC methods can be difficult, if not impossible, as the Markov chain often gets stuck in either of the minima. A Sequential Monte Carlo sampler (SMC) is a way to ameliorate this problem.

Read more ...